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Abstract

Transfer learning is a very important tool in deep learn-
ing as it allows propagating information from one ”source
dataset” to another ”target dataset”, especially in the case
of a small number of training examples in the latter. Yet,
discrepancies between the underlying distributions of the
source and target data are commonplace and are known to
have a substantial impact on algorithm performance. In this
work we suggest a novel information theoretic approach for
the analysis of the performance of deep neural networks in
the context of transfer learning. We focus on the task of
semi-supervised transfer learning, in which unlabeled sam-
ples from the target dataset are available during the net-
work training on the source dataset. Our theory suggests
that one may improve the transferability of a deep neural
network by imposing a Lautum information based regular-
ization that relates the network weights to the target data.
We demonstrate the effectiveness of the proposed approach
in various transfer learning experiments.

1. Introduction
Machine learning algorithms have lately come to the

forefront of technological advancements, providing state-
of-the-art results in a variety of fields [3]. However, along-
side their incredible performance, these methods suffer
from sensitivity to data discrepancies - any inherent differ-
ence between the training data and the test data may result in
a substantial decrease in performance. Moreover, to obtain
good performance a large amount of labeled data is neces-
sary for their training. Such a substantial amount of labeled
data is often either very expensive or simply unobtainable.

One popular approach to mitigate this issue is using
”transfer learning”, where training on a small labeled ”tar-
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(a) Pre-transfer training stage.

(b) Post-transfer training stage.

Figure 1: Our semi-supervised transfer learning technique
applying Lautum regularization. Omitting the blue part in
the first training stage (top) gives standard transfer learning.

get” dataset is improved by using information from another
large labeled ”source” dataset of a different problem. A
common method for transfer learning uses the result of
training on the source as initialization for training on the
target, thereby improving the performance on the latter [2].

Transfer learning has been the focus of much research at-
tention along the years. Plenty of different approaches have
been proposed to encourage a more effective transfer from
a source dataset to a target dataset, many of them aim at ob-
taining better system robustness to environment changes, so
as to allow an algorithm to perform well even under some
variations in the settings (e.g. changes in lighting conditions
in computer vision tasks). Sometimes this is achieved at the
expense of diminishing the performance on the original task
or data distribution. Other works take a more targeted ap-
proach and directly try to reduce algorithms’ generalization
error by decreasing the difference in their performance on
specific source and target datasets [6]. In addition, it is of-



ten the case that the target dataset has a large number of
samples, though only a few of those samples are labeled.
In this scenario a semi-supervised learning approach could
prove to be beneficial by making good use of the available
unlabeled samples for training.

In this work we focus on the task of semi-supervised
transfer learning. The problem we address is related to the
field of domain adaptation, however we make a distinction
between domain adaptation and transfer learning, where the
former refers to the case of two sources of data with the
same content (e.g. the MNIST→ SVHN case) whereas the
latter refers to the case of two sources of data which are
completely different in both content and ”styling”. Another
relevant difference is that labeled data from the target dis-
tribution is typically available in the transfer learning case,
yet less so in the domain adaptation case.

Plenty of works exist in the literature on transfer learn-
ing, semi-supervised learning and using information theory
for the analysis of machine learning algorithms. The clos-
est work to ours is [1] in which an information theoretic
approach is used in order to decompose the cross-entropy
train loss of a machine learning algorithm into several sep-
arate terms. However, unlike this work we propose a differ-
ent decomposition of the cross-entropy test loss and make
the relation to semi-supervised transfer learning.

Contribution. We consider the case of semi-supervised
transfer learning in which plenty of labeled examples from
a source distribution are available along with just a few la-
beled examples from a target distribution; yet, we are pro-
vided also with a large number of unlabeled samples from
the latter. This setup combines transfer learning and semi-
supervised learning, where both aim at obtaining improved
performance on a target dataset with a small number of la-
beled examples. In this work we suggest to combine both
methodologies to gain the advantage of both of them. This
setting represents the case where the learned information
from a large labeled source dataset is used to obtain good
performance when transferring to a mostly unlabeled target
set, where the unlabeled examples of the target are available
at the training time on the source.

To do so, we provide a theoretical derivation that leads
to a novel semi-supervised technique for transfer learning.
We take an information theoretic approach to examine the
cross-entropy test loss of machine learning methods. We
decompose the loss to several different terms that account
for different aspects of its behavior. This derivation leads to
a new regularization term, which we call ”Lautum regular-
ization” as it relies on the maximization of the Lautum in-
formation [7] between unlabeled data samples drawn from
the target distribution and the learned model weights. Fig-
ure 1 provides a general illustration of our approach.

We corroborate the effectiveness of our approach with
experiments of semi-supervised transfer learning for neu-

ral networks on image classification tasks. We examine
the transfer in two cases: from the MNIST dataset to the
notMNIST dataset (which consists of the letters A-J in
grayscale images) and from the CIFAR-10 dataset to 10 spe-
cific classes of the CIFAR-100 dataset. We compare our
results to three other methods: (1) Temporal Ensembling
[5], a state-of-the-art method for semi-supervised training
which we apply in a transfer learning setup; (2) the Multi-
kernel Maximum Mean Discrepancy (Mk-MMD) method
[4], which is popular in semi-supervised transfer learning;
(3) standard transfer learning which does not use any of
the unlabeled samples. The advantage of our method is
demonstrated in our experimental results as it outperforms
the other compared methods. The appendices to this paper
are in the supplementary material.

2. The cross-entropy loss - an information the-
ory perspective

Let D = {(xi, yi)}Ni=1 be a training set with N training
samples that is used to train a learning algorithm with a set
of weights w. We assume that given D (a parameter of the
model), the learning algorithm selects a specific hypothe-
sis from the hypothesis class according to the distribution
p(wD). In the case of a neural network, selecting the hy-
pothesis is equivalent to training the network on the data.

We denote by wD the model weights which were
learned using the training set D, and by f(y|x,wD) the
learned classification function which given the weights
wD and a D-dimensional input x ∈ RD computes the
probability of the K-dimensional label y ∈ RK . The
learned classification function is tested on data drawn from
the true underlying distribution p(x, y). Ideally, the learned
classification function f(y|x,wD) would highly resem-
ble the ground-truth classification p(y|x), and similarly
f(x, y|wD) would highly resemble p(x, y). With these
notations, we turn to analyze the cross-entropy loss used
predominantly in classification tasks. In our derivations
we used several information theoretic measures which we
present in Appendix A.

Main theoretical result. Our main theoretical result is
given by the following theorem:

Theorem 1 For a classification task with ground-truth dis-
tribution p(y|x), training set D, learned weights wD and
learned classification function f(y|x,wD), the expected
cross-entropy loss of a machine learning algorithm on the
test distribution is equal to

EwD {KL(p(x, y)||f(x, y|wD))}+H(y|x)− L(wD;x).
(1)

Note thatKL signifies the Kullback-Leibler divergence and
that we treat the training setD as a fixed parameter, whereas



wD and the examined test data (x, y) are treated as random
variables. We refer the reader to Appendix B for the proof
of Theorem 1. In accordance with Theorem 1, the three
terms that compose the expected cross-entropy test loss rep-
resent three different aspects of the loss of a learning algo-
rithm performing a classification task:

• Classifier mismatch EwDKL (p(x,y)||f(x,y|wD)):
measures the deviation of the learned classification
function’s data distribution f(x, y|wD) from the true
distribution of the data p(x, y). It is measured by the
KL-divergence, which is averaged over all possible in-
stances of w parameterized by the training set D. This
term essentially measures the ability of the weights
learned from D to represent the true distribution of the
data.

• Intrinsic Bayes error H(y|x): represents the inherent
uncertainty of the labels given the data samples.

• Lautum information between wD and x,
L(wD;x) = EwD{KL(p(x)||p(x|wD))}: rep-
resents the dependence between wD and x. It
essentially measures how much p(x|wD) deviates
from p(x) on average over the possible values of wD.

Our formulation suggests that a machine learning algo-
rithm, which is trained relying on empirical risk minimiza-
tion, implicitly aims at maximizing the Lautum information
L(wD;x) in order to minimize the cross-entropy loss. At
the same time, the algorithm aspires to minimize the KL-
divergence between the ground-truth distribution of the data
and the learned classification function. The intrinsic Bayes
error cannot be minimized and remains the inherent uncer-
tainty of the task. Namely, the formulation in (1) suggests
that encouraging a larger Lautum information between the
data samples and the learned model weights would be ben-
eficial for reducing the model’s test error on unseen data
drawn from p(x, y).

3. Lautum information based semi-supervised
transfer learning

We turn to show how we may apply our theory on
the task of semi-supervised transfer learning. In standard
transfer learning, which consists of pre-transfer and post-
transfer stages, a neural network is trained on a labeled
source dataset and then fine-tuned on a smaller labeled tar-
get dataset. In semi-supervised transfer learning, which we
study here, we assume that an additional large set of unla-
beled examples from the target distribution is available dur-
ing training on the source data.

Semi-supervised transfer learning is highly beneficial in
scenarios where the available target dataset is only partially
annotated. Using the unlabeled part of this dataset, which

is usually substantially bigger than the labeled part, has
the potential of considerably improving the obtained per-
formance. Thus, if this unlabeled part is a-priori available,
then using it from the beginning of training can potentially
improve the results. For using the unlabeled samples of the
target dataset during the pre-transfer training on the source
dataset, we leverage the formulation in (1). Considering its
three terms, it is clear that by using unlabeled samples the
classifier mismatch term cannot be minimized due to the
lack of labels; the intrinsic Bayes error is a characteristic of
the task and cannot be minimized either; yet, the Lautum
information does not depend on the labels and can therefore
be calculated and maximized.

When the Lautum information is calculated between the
model weights and data samples drawn from the target dis-
tribution, its maximization would encourage the learned
weights to better relate to these samples, and by extension to
better relate to the underlying probability distribution from
which they were drawn. Therefore, it is expected that an
enlarged Lautum information will yield an improved perfor-
mance on the target test set. Accordingly, we aim at max-
imizing L(wD;x) during training. The pre-transfer max-
imization of the term L(wD;x), which is computed with
samples drawn from the target distribution, would make the
learned weights more inclined towards good performance
on the target set right from the beginning. At the same
time, the cross-entropy loss at this stage is calculated us-
ing labeled samples from the source dataset. In the post-
transfer stage, the cross-entropy loss is calculated using la-
beled samples from the target dataset, and therefore implic-
itly maximizes L(wD;x) by itself. We have empirically
observed that explicitly maximizing the Lautum informa-
tion between the unlabeled target samples and the model
weights during post-transfer training (by imposing Lautum
regularization) in addition to (or instead of) during pre-
transfer training does not lead to improved results.

To summarize, our semi-supervised transfer learning ap-
proach optimizes two goals at the same time: (i) minimizing
the classifier mismatch EwD {KL (p(x, y)||f(x, y|wD))},
which is achieved using the labeled data both for the source
and the target datasets during pre-transfer and post-transfer
training respectively; and (ii) maximizing the Lautum in-
formation L(wD;x), which is achieved explicitly using the
unlabeled target data during pre-transfer training by impos-
ing Lautum regularization, and in the post-transfer stage im-
plicitly through the minimization of the cross-entropy loss
which is evaluated on the labeled target data. Figure 1 sum-
marizes our training scheme.

3.1. Training with Lautum regularization

We refer the reader to Appendix C for details regarding
the estimation of the Lautum information. Once the Lautum
information has been estimated, our loss function for pre-



transfer training is:

Loss =

N∑
i=1

K∑
k=1

−ysik log fk(xsi |wD)− λL(wD;x
t). (2)

Note that the the cross-entropy loss is calculated using la-
beled samples from the source training set (which we de-
note by the s superscript) whereas the Lautum regulariza-
tion term is calculated using unlabeled samples from the tar-
get training set (which we denote by the t superscript). Also
note that yi represents the ground truth label of the sam-
ple xi; f(xi|wD) represents the network’s estimated post
softmax label for that sample; and L(wD;x) is calculated
as detailed in Appendix C. We emphasize that the Lautum
regularization term is subtracted and not added to the cross-
entropy loss since we aim at maximizing the Lautum infor-
mation during training. Our loss function for post-transfer
training consists of a standard cross-entropy loss:

Loss =

N∑
i=1

K∑
k=1

−ytik log fk(xti|wD). (3)

Note that at this stage the cross-entropy loss, which is cal-
culated using labeled target samples, inherently includes the
Lautum term of the target data (see Theorem 1).

4. Experiments
In order to demonstrate the advantages of semi-

supervised transfer learning with Lautum regularization we
perform several experiments on image classification tasks
using deep neural networks (though our theoretical deriva-
tions also apply to other machine learning algorithms). We
train deep neural networks and perform transfer learning
from the original source dataset to the target dataset. In our
experiments we use the original labeled source training set
as is and split the target training set into two parts. The first
part is very small and contains labeled samples, whereas the
second part consists of the remainder of the target training
set and contains unlabeled samples only (the labels are dis-
carded). The performance is evaluated by the post transfer
accuracy on the target test set.

We examine four different methods of transfer learning:
(1) standard supervised transfer which uses the labeled sam-
ples only. (2) Temporal Ensembling semi-supervised learn-
ing as outlined in [5], applied in a transfer learning setting.
Temporal Ensembling is applied in the post-transfer train-
ing stage. (3) Mk-MMD [4], which is based on 19 different
Gaussian kernels with different standard deviations. Mk-
MMD is applied in the pre-transfer training stage. (4) Lau-
tum regularization - our technique as described in Section 3.

We refer the reader to Appendix D for more details about
the experimental setup. Using the settings outlined in Ap-
pendix D.1 we obtained the results shown in Table 1 for the

MNIST→ notMNIST case, and using the settings outlined
in Appendix D.2 we obtained the results shown in Table 2
for the CIFAR-10→ CIFAR-100 (10 classes) case. The ad-
vantage of using Lautum regularization is evident from the
results, as it outperforms the other compared methods in all
the examined target training set splits.

Method Source→ Target # labeled Accuracy

Standard MNIST / notMNIST 50 34.02%
TE MNIST / notMNIST 50 37.28%

Mk-MMD MNIST / notMNIST 50 46.72%
Lautum MNIST / notMNIST 50 47.96%
Standard MNIST / notMNIST 100 57.58%

TE MNIST / notMNIST 100 61.45%
Mk-MMD MNIST / notMNIST 100 63.32%

Lautum MNIST / notMNIST 100 65.21%
Standard MNIST / notMNIST 200 67.78%

TE MNIST / notMNIST 200 74.87%
Mk-MMD MNIST / notMNIST 200 80.35%

Lautum MNIST / notMNIST 200 83.77%

Table 1: target test set accuracy comparison between stan-
dard transfer learning, Temporal Ensembling (TE), Mk-
MMD and Lautum regularization for different amounts of
labeled training target samples, MNIST→ notMNIST.

Method Source→ Target # labeled Accuracy

Standard CIFAR-10 / 100 100 39.90%
TE CIFAR-10 / 100 100 42.20%

Mk-MMD CIFAR-10 / 100 100 45.30%
Lautum CIFAR-10 / 100 100 46.70%
Standard CIFAR-10 / 100 200 52.80%

TE CIFAR-10 / 100 200 54.60%
Mk-MMD CIFAR-10 / 100 200 59.30%

Lautum CIFAR-10 / 100 200 60.90%
Standard CIFAR-10 / 100 500 64.50%

TE CIFAR-10 / 100 500 66.50%
Mk-MMD CIFAR-10 / 100 500 68.00%

Lautum CIFAR-10 / 100 500 70.80%

Table 2: target test set accuracy comparison between stan-
dard transfer learning, Temporal Ensembling (TE), Mk-
MMD and Lautum regularization for different amounts of
labeled training target samples, CIFAR-10 → CIFAR-100
(10 classes).
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